Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807089

RESUMO

Clinical, epidemiological, and experimental evidence demonstrate non-cancer, cardiovascular, and endocrine effects of ionizing radiation exposure including growth hormone deficiency, obesity, metabolic syndrome, diabetes, and hyperinsulinemia. Insulin-like growth factor-1 (IGF-1) signaling perturbations are implicated in development of cardiovascular disease and metabolic syndrome. The minipig is an emerging model for studying radiation effects given its high analogy to human anatomy and physiology. Here we use a minipig model to study late health effects of radiation by exposing male Göttingen minipigs to 1.9-2.0 Gy X-rays (lower limb tibias spared). Animals were monitored for 120 days following irradiation and blood counts, body weight, heart rate, clinical chemistry parameters, and circulating biomarkers were assessed longitudinally. Collagen deposition, histolopathology, IGF-1 signaling, and mRNA sequencing were evaluated in tissues. Our findings indicate a single exposure induced histopathological changes, attenuated circulating IGF-1, and disrupted cardiac IGF-1 signaling. Electrolytes, lipid profiles, liver and kidney markers, and heart rate and rhythm were also affected. In the heart, collagen deposition was significantly increased and transforming growth factor beta-1 (TGF-beta-1) was induced following irradiation; collagen deposition and fibrosis were also observed in the kidney of irradiated animals. Our findings show Göttingen minipigs are a suitable large animal model to study long-term effects of radiation exposure and radiation-induced inhibition of IGF-1 signaling may play a role in development of late organ injuries.


Assuntos
Biomarcadores , Fator de Crescimento Insulin-Like I/metabolismo , Miocárdio/metabolismo , Lesões por Radiação/metabolismo , Transdução de Sinais/efeitos da radiação , Animais , Células Sanguíneas/metabolismo , Células Sanguíneas/efeitos da radiação , Peso Corporal/efeitos da radiação , Colágeno/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta à Radiação , Fibrose/etiologia , Regulação da Expressão Gênica/efeitos da radiação , Frequência Cardíaca/efeitos da radiação , Hematopoese/efeitos da radiação , Metabolismo dos Lipídeos/efeitos da radiação , Especificidade de Órgãos/efeitos da radiação , Lesões por Radiação/genética , Suínos
2.
Sci Rep ; 10(1): 6825, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32321983

RESUMO

The threat of nuclear exposure is heightened and it is imperative to identify potential countermeasures for acute radiation syndrome. Currently no countermeasures have been approved for prophylactic administration. Effective countermeasures should function to increase survival in the short term as well as to increase the overall prognosis of an exposed individual long term. Here we describe the use of a promising radiation countermeasure, BBT-059, and the results of a long term mouse study (up to 12 months) in the male CD2F1 strain using 60Co gamma irradiation (~0.6 Gy/min, 7.5-12.5 Gy). We report the dose reduction factor of 1.28 for BBT-059 (0.3 mg/kg) compared to control administered 24 h prior to irradiation. In the long term study animals showed accelerated recovery in peripheral blood cell counts, bone marrow colony forming units, sternal cellularity and megakaryocyte numbers in drug treated mice compared to formulation buffer. In addition, increased senescence was observed in the kidneys of animals administered control or drug and exposed to the highest doses of radiation. Decreased levels of E-cadherin, LaminB1 and increased levels of Cyc-D and p21 in spleen lysates were observed in animals administered control. Taken together the results indicate a high level of protection following BBT-059 administration in mice exposed to lethal and supralethal doses of total body gamma-radiation.


Assuntos
Interleucina-11/farmacologia , Exposição à Radiação , Irradiação Corporal Total , Fosfatase Alcalina/sangue , Animais , Aspartato Aminotransferases/sangue , Contagem de Células Sanguíneas , Caderinas/metabolismo , Células Clonais , Ensaio de Unidades Formadoras de Colônias , Relação Dose-Resposta à Radiação , Raios gama , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/efeitos da radiação , Rim/patologia , Rim/efeitos da radiação , Fígado/patologia , Fígado/efeitos da radiação , Masculino , Camundongos , Especificidade de Órgãos/efeitos da radiação , Análise de Sobrevida
3.
Basic Clin Pharmacol Toxicol ; 125(3): 289-303, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30843331

RESUMO

Sodium cyanide (NaCN) is a commonly and widely used industrial and laboratory chemical that is highly toxic. Its availability and rapid harmful/lethal effects combine to make cyanide a potential foodborne/waterborne intentional-poisoning hazard. Effective antidotes to cyanide poisoning are currently approved only for intravenous administration. Therefore, an effective cyanide antidote that can be administered intramuscularly in pre-hospital and/or mass-casualty settings is needed. Dimethyl trisulfide (DMTS) is a naturally occurring substance used as a flavour enhancer in foods. DMTS has shown antidotal efficacy in cyanide poisoning and is thought to act as both a sulphur donor and partial methaemoglobin inducer. In this study, an intramuscular injection of DMTS (6.25-200 mg/kg) was given to rats 1 minute after an oral dose of NaCN (98.2 mg/kg; twice the median lethal dose) to test the antidotal efficacy and safety of DMTS treatment. Toxic signs and survival were examined along with behavioural function (up to 30 hour after ingestion) using a previously established operant behavioural model. A large range of DMTS doses (6.25-100 mg/kg) increased survival after oral cyanide poisoning, and the lower DMTS doses (6.25-25 mg/kg) also proved to be behaviourally and physiologically safe. Larger DMTS doses (50-200 mg/kg) produced side effects (ie, inflammation and limping) that were more severe and protracted than those observed at lower DMTS doses. The 25 mg/kg DMTS proved to be the most efficacious (increasing survival from 20% to 75%) and also produced minimal side effects (eg, inflammation) that resolved within 24-72 hour. Thus, DMTS shows promise as an intramuscularly administered cyanide antidote useful for prompt pre-hospital or mass-casualty emergency medical treatment.


Assuntos
Antídotos/administração & dosagem , Primeiros Socorros/métodos , Intoxicação/tratamento farmacológico , Cianeto de Sódio/intoxicação , Sulfetos/administração & dosagem , Administração Oral , Animais , Antídotos/efeitos adversos , Técnicas de Observação do Comportamento , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Injeções Intramusculares , Dose Letal Mediana , Masculino , Incidentes com Feridos em Massa , Modelos Neurológicos , Intoxicação/mortalidade , Intoxicação/psicologia , Ratos , Cianeto de Sódio/administração & dosagem , Sulfetos/efeitos adversos , Análise de Sobrevida , Resultado do Tratamento
4.
J Am Assoc Lab Anim Sci ; 56(6): 762-767, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29256371

RESUMO

In this study, we compared the plasma concentrations of meloxicam in pediatric rat pups (ages: 7, 14, 21, and 28 d) with those of young adult rats. Adult rats received 1.34 mg/kg SC meloxicam to determine the target peak plasma concentration (Cmax) for comparison with the pediatric animals. Pediatric rats received 1.34 mg/kg SC meloxicam, and in all age groups, Cmax met or exceeded that in adults (11.5 ±2.7 µg/mL). Plasma concentrations were similar between male and female pups within age groups, and peak plasma concentration was achieved more rapidly in rat pups than adults. The analgesic efficacy of this dose was not evaluated in this study.


Assuntos
Envelhecimento , Anti-Inflamatórios não Esteroides/farmacocinética , Ratos/fisiologia , Tiazinas/farmacocinética , Tiazóis/farmacocinética , Animais , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/sangue , Cálculos da Dosagem de Medicamento , Feminino , Humanos , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Meloxicam , Ratos/sangue , Ratos Sprague-Dawley , Tiazinas/administração & dosagem , Tiazinas/sangue , Tiazóis/administração & dosagem , Tiazóis/sangue
5.
Inhal Toxicol ; 29(1): 32-41, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28183203

RESUMO

Acute respiratory dynamics and histopathology of the lungs and trachea following inhaled exposure to ammonia were investigated. Respiratory dynamic parameters were collected from male Sprague-Dawley rats (300-350 g) during (20 min) and 24 h (10 min) after inhalation exposure for 20 min to 9000, 20,000, and 23,000 ppm of ammonia in a head-only exposure system. Body weight loss, analysis of blood cells, and lungs and trachea histopathology were assessed 1, 3, and 24 h following inhalation exposure to 20,000 ppm of ammonia. Prominent decreases in minute volume (MV) and tidal volume (TV) were observed during and 24 h post-exposure in all ammonia-exposed animals. Inspiratory time (IT) and expiratory time (ET) followed similar patterns and decreased significantly during the exposure and then increased at 24 h post-exposure in all ammonia-exposed animals in comparison to air-exposed controls. Peak inspiratory (PIF) and expiratory flow (PEF) significantly decreased during the exposure to all ammonia doses, while at 24 h post-exposure they remained significantly decreased following exposure to 20,000 and 23,000 ppm. Exposure to 20,000 ppm of ammonia resulted in body weight loss at 1 and 3 h post-exposure; weight loss was significant at 24 h compared to controls. Exposure to 20,000 ppm of ammonia for 20 min resulted in increases in the total blood cell counts of white blood cells, neutrophils, and platelets at 1, 3, and 24 h post-exposure. Histopathologic evaluation of the lungs and trachea tissue of animals exposed to 20,000 ppm of ammonia at 1, 3, and 24 h post-exposure revealed various morphological changes, including alveolar, bronchial, and tracheal edema, epithelial necrosis, and exudate consisting of fibrin, hemorrhage, and inflammatory cells. The various alterations in respiratory dynamics and damage to the respiratory system observed in this study further emphasize ammonia-induced respiratory toxicity and the relevance of efficacious medical countermeasure strategies.


Assuntos
Amônia/toxicidade , Pulmão/efeitos dos fármacos , Fenômenos Fisiológicos Respiratórios/efeitos dos fármacos , Administração por Inalação , Animais , Peso Corporal/efeitos dos fármacos , Contagem de Leucócitos , Pulmão/patologia , Masculino , Ratos Sprague-Dawley , Traqueia/efeitos dos fármacos , Traqueia/patologia
6.
J Neurotrauma ; 28(10): 2171-83, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21770761

RESUMO

A mouse model of repeated blast exposure was developed using a compressed air-driven shock tube, to study the increase in severity of traumatic brain injury (bTBI) after multiple blast exposures. Isoflurane anesthetized C57BL/6J mice were exposed to 13.9, 20.6, and 25 psi single blast overpressure (BOP1) and allowed to recover for 5 days. BOP1 at 20.6 psi showed a mortality rate of 2% and this pressure was used for three repeated blast exposures (BOP3) with 1 and 30 min intervals. Overall mortality rate in BOP3 was increased to 20%. After blast exposure, righting reflex time and body-weight loss were significantly higher in BOP3 animals compared to BOP1 animals. At 4 h, brain edema was significantly increased in BOP3 animals compared to sham controls. Reactive oxygen species in the cortex were increased significantly in BOP1 and BOP3 animals. Neuropathological analysis of the cerebellum and cerebral cortex showed dense silver precipitates in BOP3 animals, indicating the presence of diffuse axonal injury. Fluoro-Jade B staining showed increased intensity in the cortex of BOP3 animals indicating neurodegeneration. Rota Rod behavioral test showed a significant decrease in performance at 10 rpm following BOP1 or BOP3 at 2 h post-blast, which gradually recovered during the 5 days. At 20 rpm, the latency to fall was significantly decreased in both BOP1 and BOP3 animals and it did not recover in the majority of the animals through 5 days of testing. These data suggest that repeated blast exposures lead to increased impairment severity in multiple neurological parameters of TBI in mice.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas/patologia , Animais , Traumatismos por Explosões/mortalidade , Traumatismos por Explosões/fisiopatologia , Encéfalo/patologia , Química Encefálica/fisiologia , Edema Encefálico/etiologia , Edema Encefálico/patologia , Lesões Encefálicas/mortalidade , Lesões Encefálicas/fisiopatologia , Córtex Cerebral/patologia , Corantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Equilíbrio Postural/fisiologia , Pressão , Espécies Reativas de Oxigênio/metabolismo , Recidiva , Sobrevida , Redução de Peso/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...